Greatly Revised Edition of Tidyverse Skeptic

As a longtime R user and someone with a passionate interest in how people learn, I continue to be greatly concerned about the use of the Tidyverse in teaching noncoder learners of R. Accordingly, I have now thoroughly revised my Tidyverse Skeptic essay. It is greatly reorganized with focus on teaching R, with a number of new examples, and some material on historical context of the rise of Tidy. I continue to on the one hand thank RStudio for its overall contribution to the R community but on the other believe that using Tidy for teaching beginners is actually an obstacle to learning for that group.

I close the essay by first noting that RStudio is now a Public Interest Corporation, thus with much broader public responsibility. I then renew a request I made to RStudio founder/CEO JJ Allaire when he met with me in 2019: “Please encourage R instructors to use a mixture of Tidy and base-R in their teaching.”

Please read the revised essay at the above link. Its Overview section is reproduced below.

  • Again, my focus here is on teaching R to those with little or no coding background. I am not discussing teaching Computer Science students.
  • Tidy was consciously designed to equip learners with just a small set of R tools. The students learn a few dplyr verbs well, but that equips them to do much less with R than a standard R beginners course would teach. That leaves the learners less equipped to put R to real use, compared to “graduates” of standard base-R courses.
  • Thus the “testimonials” in which Tidy teachers of R claim great success are misleading. The “success” is due to watering down the material (and false conflation with ggplot2). The students learn to mimic a few example patterns, but are not equipped to go further.
  • The refusal to teach ‘$’, and the de-emphasis of, or even complete lack of coverage of, R vectors is a major handicap for Tidy “graduates” to making use of most of R’s statistical functions and statistical packages.
  • Tidy is too abstract for beginners, due to the philosophy of functional programming (FP). The latter is popular with many sophisticated computer scientists, but is difficult even for computer science students. Tidy is thus unsuited as the initial basis of instruction for nonprogrammer students of R. FP should be limited and brought in gradually. The same statement applies to base-R’s own FP functions.
  • The FP philosophy replaces straightforward loops with abstract use of functions. Since functions are the most difficult aspect for noncoder R learners, FP is clearly not the right path for such learners. Indeed, even many Tidy advocates concede that it is in various senses often more difficult to write Tidy code than base-R. Hadley says, for instance, “it may take a while to wrap your head around [FP].”
  • A major problem with Tidy for R beginners is cognitive overload: The basic operations contain myriad variants. Though of course one need not learn them all, one needs some variants even for simple operations, e.g. pipes on functions of more than one argument.
  • The obsession among many Tidyers that one must avoid writing loops, the ‘$’ operator, brackets and so on often results in obfuscated code. Once one goes beyond the simple mutate/select/filter/summarize level, Tidy programming can be of low readability.
  • Tidy advocates also concede that debugging Tidy code is difficult, especially in the case of pipes. Yet noncoder learners are the ones who make the most mistakes, so it makes no sense to have them use a coding style that makes it difficult to track down their errors.
  • Note once again, that in discussing teaching, I am taking the target audience here to be nonprogrammers who wish to use R for data analysis. Eventually, they may wish to make use of FP, but at the crucial beginning stage, keep it simple, little or no fancy stuff.